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(57) ABSTRACT

In an example, the present invention provides a method for
manufacturing a gallium and nitrogen containing laser diode
device. The method includes providing a gallium and nitro-
gen containing substrate having a surface region and forming
epitaxial material overlying the surface region, the epitaxial
material comprising an n-type cladding region, an active
region comprising of at least one active layer overlying the
n-type cladding region, and a p-type cladding region overly-
ing the active layer region. The method includes patterning
the epitaxial material to form a plurality of dice, each of the
dice corresponding to at least one laser device, characterized
by a first pitch between a pair of dice, the first pitch being less
than a design width. The method includes transferring each of
the plurality of dice to a carrier wafer such that each pair of
dice is configured with a second pitch between each pair of
dice, the second pitch being larger than the first pitch corre-
sponding to the design width.

26 Claims, 11 Drawing Sheets
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METHOD FOR MANUFACTURING GALLIUM
AND NITROGEN BEARING LASER DEVICES
WITH IMPROVED USAGE OF SUBSTRATE
MATERIAL

BACKGROUND

In 1960, the laser was first demonstrated by Theodore H.
Maiman at Hughes Research Laboratories in Malibu. This
laser utilized a solid-state flash lamp-pumped synthetic ruby
crystal to produce red laser light at 694 nm. By 1964, blue and
green laser output was demonstrated by William Bridges at
Hughes Aircraft utilizing a gas laser design called an Argon
ion laser. The Ar-ion laser utilized a noble gas as the active
medium and produced laser light output in the UV, blue, and
green wavelengths including 351 nm, 454.6 nm, 457.9 nm,
465.8 nm, 476.5 nm, 488.0 nm, 496.5 nm, 501.7 nm, 514.5
nm, and 528.7 nm. The Ar-ion laser had the benefit of pro-
ducing highly directional and focusable light with a narrow
spectral output, but the wall plug efficiency was <0.1%, and
the size, weight, and cost of the lasers were undesirable as
well.

As laser technology evolved, more efficient lamp pumped
solid state laser designs were developed for the red and infra-
red wavelengths, but these technologies remained a challenge
for blue and green and blue lasers. As a result, lamp pumped
solid state lasers were developed in the infrared, and the
output wavelength was converted to the visible using spe-
cialty crystals with nonlinear optical properties. A green lamp
pumped solid state laser had 3 stages: electricity powers
lamp, lamp excites gain crystal which lasers at 1064 nm, 1064
nm goes into frequency conversion crystal which converts to
visible 532 nm. The resulting green and blue lasers were
called “lamped pumped solid state lasers with second har-
monic generation” (LPSS with SHG) had wall plug efficiency
of ~1%, and were more efficient than Ar-ion gas lasers, but
were still too inefficient, large, expensive, fragile for broad
deployment outside of specialty scientific and medical appli-
cations. Additionally, the gain crystal used in the solid state
lasers typically had energy storage properties which made the
lasers difficult to modulate at high speeds which limited its
broader deployment.

To improve the efficiency of these visible lasers, high
power diode (or semiconductor) lasers were utilized. These
“diode pumped solid state lasers with SHG” (DPSS with
SHG) had 3 stages: electricity powers 808 nm diode laser, 808
nm excites gain crystal, which lasers at 1064 nm, 1064 nm
goes into frequency conversion crystal which converts to
visible 532 nm. The DPSS laser technology extended the life
and improved the wall plug efficiency of the LPSS lasers to
5-10%, and further commercialization ensued into more
high-end specialty industrial, medical, and scientific applica-
tions. However, the change to diode pumping increased the
system cost and required precise temperature controls, leav-
ing the laser with substantial size, power consumption while
not addressing the energy storage properties which made the
lasers difficult to modulate at high speeds.

As high power laser diodes evolved and new specialty SHG
crystals were developed, it became possible to directly con-
vert the output of the infrared diode laser to produce blue and
green laser light output. These “directly doubled diode lasers”
or SHG diode lasers had 2 stages: electricity powers 1064 nm
semiconductor laser, 1064 nm goes into frequency conver-
sion crystal which converts to visible 532 nm green light.
These lasers designs are meant to improve the efficiency, cost
and size compared to DPSS-SHG lasers, but the specialty
diodes and crystals required make this challenging today.
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Additionally, while the diode-SHG lasers have the benefit of
being directly modulate-able, they suffer from severe sensi-
tivity to temperature which limits their application. Currently
the only viable direct blue and green laser diode structures are
fabricated from the wurtzite AlGalnN material system. The
manufacturing of light emitting diodes from GaN related
materials is dominated by the heteroepitaxial growth of GaN
on foreign substrates such as Si, SiC and sapphire. Laser
diode devices operate at such high current densities that the
crystalline defects associated with heteroepitaxial growth are
not acceptable in laser diode devices due to the high opera-
tional current densities found in laser diodes. Because of this,
very low defect-density, free-standing GaN substrates have
become the substrate of choice for GaN laser diode manufac-
turing. Unfortunately, such substrates are costly and ineffi-
cient.

SUMMARY

The invention provides a method for fabricating semicon-
ductor laser diodes. Typically these devices are fabricated
using an epitaxial deposition, followed by processing steps on
the epitaxial substrate and overlying epitaxial material. What
follows is a general description of the typical configuration
and fabrication of these devices.

In an example, the present invention provides a method for
manufacturing a gallium and nitrogen containing laser diode
device. The method includes providing a gallium and nitro-
gen containing substrate having a surface region and forming
epitaxial material overlying the surface region, the epitaxial
material comprising an n-type cladding region, an active
region comprising of at least one active layer overlying the
n-type cladding region, and a p-type cladding region overly-
ing the active layer region. The method includes patterning
the epitaxial material to form a plurality of dice, each of the
dice corresponding to at least one laser device, characterized
by a first pitch between a pair of dice, the first pitch being less
than a design width. As used herein, the design with corre-
sponds to an actual width or design parameter of a resulting
laser diode device including active regions, contacts, and
interconnects in an example, although there can be variations.
The method includes transferring each of the plurality of dice
to a carrier wafer such that each pair of dice is configured with
a second pitch between each pair of dice, the second pitch
being larger than the first pitch corresponding to the design
width.

In an example, the design width can be the actual pitch of
the resulting laser diode device with interconnects and con-
tacts or another parameter related to the resulting laser diode
device, which is larger than the pitch of the first pitch. As used
herein the term “first” and “second” should not imply any
order and should be broadly construed. Of course, there can
be variations.

The present invention achieves these benefits and others in
the context of known process technology. However, a further
understanding of the nature and advantages of the present
invention may be realized by reference to the latter portions of
the specification and attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a simplified illustration of a laser diode according
to an example of the present invention.

FIG. 2 is a simplified illustration of a die expanded laser
diode according to an example of the present invention.
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FIG. 3 is a schematic diagram of semipolar laser diode with
the cavity aligned in the projection of c-direction with cleaved
or etched mirrors in an example.

FIG. 4 is a schematic cross-section of ridge laser diode in
an example.

FIG. 5 is a top view of a selective area bonding process in
an example.

FIG. 6 is a simplified process flow for epitaxial preparation
in an example.

FIG. 7 is a simplified side view illustration of selective area
bonding in an example.

FIG. 8 is a simplified process flow of epitaxial preparation
with active region protection in an example.

FIG. 9 is a simplified process flow of epitaxial preparation
with active region protection and with ridge formation before
bonding in an example.

FIG. 10 is a simplified illustration of anchored PEC under-
cut (top-view) in an example.

FIG. 11 is a simplified illustration of anchored PEC under-
cut (side-view) in an example.

DETAILED DESCRIPTION

The invention provides a method for fabricating semicon-
ductor laser diodes. Typically these devices are fabricated
using an epitaxial deposition, followed by processing steps on
the epitaxial substrate and overlying epitaxial material. What
follows is a general description of the typical configuration
and fabrication of these devices.

Reference can be made to the following description of the
drawings, as provided below.

Referring to FIG. 1 is a side view illustration of a state of
the art GaN based laser diode after processing. Laser diodes
are fabricated on the original gallium and nitrogen containing
epitaxial substrate 100, typically with epitaxial n-GaN and
n-side cladding layers 101, active region 102, p-GaN and
p-side cladding 103, insulating layers 104 and contact/pad
layers 105. Laser die pitch is labeled. All epitaxy material not
directly under the laser ridge is wasted in this device design.
In an example, n-type cladding which may be comprised of
GaN, AlGaN, or InAlGaN.

Referring now to FIG. 2 is a side view illustrations of
gallium and nitrogen containing epitaxial wafer 100 before
the die expansion process and carrier wafer 106 after the die
expansion process. This figure demonstrates a roughly five
times expansion and thus five times improvement in the num-
ber of laser diodes, which can be fabricated from a single
gallium and nitrogen containing substrate and overlying epi-
taxial material. In this example, laser ridges (or laser diode
cavities) 110 are formed after transfer of the die to the carrier
wafer 106. Typical epitaxial and processing layers are
included for example purposes and are n-GaN and n-side
cladding layers 101, active region 102, p-GaN and p-side
cladding 103, insulating layers 104, and contact/pad layers
105. Additionally, a sacrificial region 107 and bonding mate-
rial 108 are used during the die expansion process.

FIG. 3 is a schematic diagram of semipolar laser diode with
the cavity aligned in the projection of c-direction with cleaved
or etched mirrors. Shows a simplified schematic diagram of
semipolar laser diode with the cavity aligned in the projection
of c-direction with cleaved or etched mirrors. The laser stripe
region is characterized by a cavity orientation substantially in
aprojection of a c-direction, which is substantially normal to
an a-direction. The laser strip region has a first end 107 and a
second end 109 and is formed on a projection of a c-direction
on a {20-21} gallium and nitrogen containing substrate hav-
ing a pair of cleaved mirror structures, which face each other.
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4

FIG. 4 is a Schematic cross-section of ridge laser diode in
anexample, and shows a simplified schematic cross-sectional
diagram illustrating a state of the art laser diode structure.
This diagram is merely an example, which should not unduly
limit the scope of the claims herein. As shown, the laser
device includes gallium nitride substrate 203, which has an
underlying n-type metal back contact region 201. In an
embodiment, the metal back contact region is made of a
suitable material such as those noted below and others. In an
embodiment, the device also has an overlying n-type gallium
nitride layer 205, an active region 207, and an overlying
p-type gallium nitride layer structured as a laser stripe region
211. Additionally, the device also includes an n-side separate
confinement hetereostructure (SCH) 206, p-side guiding
layer or SCH 208, p-AlGaN EBL 209, among other features.
In an embodiment, the device also has a p++ type gallium
nitride material 213 to form a contact region.

FIG. 5 is a simplified view of a top view of a selective area
bonding process and illustrates a die expansion process via
selective area bonding. The original gallium and nitrogen
containing epitaxial wafer 201 has had individual die of epi-
taxial material and release layers defined through processing.
Individual epitaxial material die are labeled 202 and are
spaced at pitch 1. A round carrier wafer 200 has been prepared
with patterned bonding pads 203. These bonding pads are
spaced at pitch 2, which is an even multiple of pitch 1 such
that selected sets of epitaxial die can be bonded in each
iteration of the selective area bonding process. The selective
area bonding process iterations continue until all epitaxial die
have been transferred to the carrier wafer 204. The gallium
and nitrogen containing epitaxy substrate 201 can now
optionally be prepared for reuse.

In an example, FIG. 6 is a simplified diagram of process
flow for epitaxial preparation including a side view illustra-
tion of an example epitaxy preparation process flow for the
die expansion process. The gallium and nitrogen containing
epitaxy substrate 100 and overlying epitaxial material are
defined into individual die, bonding material 108 is depos-
ited, and sacrificial regions 107 are undercut. Typical epi-
taxial layers are included for example purposes and are
n-GaN and n-side cladding layers 101, active region 102, and
p-GaN and p-side cladding 103.

In an example, FIG. 7 is a simplified illustration of a side
view of a selective area bonding process in an example. Pre-
pared gallium and nitrogen containing epitaxial wafer 100
and prepared carrier wafer 106 are the starting components of
this process. The first selective area bonding iteration trans-
fers a fraction of the epitaxial die, with additional iterations
repeated as needed to transfer all epitaxial die. Once the die
expansion process is completed, state of the art laser process-
ing can continue on the carrier wafer. Typical epitaxial and
processing layers are included for example purposes and are
n-GaN and n-side cladding layers 101, active region 102,
p-GaN and p-side cladding 103, insulating layers 104 and
contact/pad layers 105. Additionally, a sacrificial region 107
and bonding material 108 are used during the die expansion
process.

In an example, FIG. 8 is a simplified diagram of an epitaxy
preparation process with active region protection. As shown
is a side view illustration of an alternative epitaxial wafer
preparation process flow during which sidewall passivation is
used to protect the active region during any PEC undercut
etch steps. This process flow allows for a wider selection of
sacrificial region materials and compositions. Typical sub-
strate, epitaxial, and processing layers are included for
example purposes and are the gallium and nitrogen contain-
ing substrate 100, n-GaN and n-side cladding layers 101,
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active region 102, p-GaN and p-side cladding 103, insulating
layers 104 and contact/pad layers 105. Additionally, a sacri-
ficial region 107 and bonding material 108 are used during the
die expansion process.

In an example, FIG. 9 is a simplified diagram of epitaxy
preparation process flow with active region protection and
ridge formation before bonding. As shown is a side view
illustration of an alternative epitaxial wafer preparation pro-
cess flow during which sidewall passivation is used to protect
the active region during any PEC undercut etch steps and laser
ridges are defined on the denser epitaxial wafer before trans-
fer. This process flow potentially allows cost saving by per-
forming additional processing steps on the denser epitaxial
wafer. Typical substrate, epitaxial, and processing layers are
included for example purposes and are the gallium and nitro-
gen containing substrate 100, n-GaN and n-side cladding
layers 101, active region 102, p-GaN and p-side cladding 103,
insulating layers 104 and contact/pad layers 105. Addition-
ally, a sacrificial region 107 and bonding material 108 are
used during the die expansion process.

FIG. 10 is a simplified example of anchored PEC undercut
(top-view). As shown is a top view of an alternative release
process during the selective area bonding. In this embodiment
atop down etch is used to etch away the area 300, followed by
the deposition of bonding metal 303. A PEC etch is then used
to undercut the region 301. The sacrificial region 302 remains
intact and serves as a mechanical support during the selective
area bonding process.

FIG. 11 is a simplified view of anchored PEC undercut
(side-view) inan example. As shown is a side view illustration
of'the anchored PEC undercut. Posts of sacrificial region are
included at each end of the epitaxial die for mechanical sup-
port until the bonding process is completed. After bonding the
epitaxial material will cleave at the unsupported thin film
region between the bond pads and intact sacrificial regions,
enabling the selective are bonding process. Typical epitaxial
and processing layers are included for example purposes and
are n-GaN and n-side cladding layers 101, active region 102,
p-GaN and p-side cladding 103, insulating layers 104 and
contact/pad layers 105. Additionally, a sacrificial region 107
and bonding material 108 are used during the die expansion
process. Epitaxial material is transferred from the gallium and
nitrogen containing epitaxial wafer 100 to the carrier wafer
106. Further details of the present method and structures can
be found more particularly below.

As further background for the reader, gallium nitride, and
related crystals, are difficult to produce in bulk form. Growth
technologies capable of producing large area boules of GaN
are still in their infancy, and costs for all orientations are
significantly more expensive than similar wafer sizes of other
semiconductor substrates such as Si, GaAs, and InP. While
large area, free-standing GaN substrates (e.g. with diameters
of two inches or greater) are available commercially, the
availability of large area non-polar and semi-polar GaN sub-
strates is quite restricted. Typically, these orientations are
produced by the growth of a c-plane oriented bool, which is
then sliced into rectangular wafers at some steep angle rela-
tive to the c-plane. The width of these wafers is limited by the
thickness of the c-plane oriented boule, which in turn is
restricted by the method of boule production (e.g. typically
hydride vapor phase epitaxy (HVPE) on a foreign substrate).
Such small wafer sizes are limiting in several respects. The
first is that epitaxial growth must be carried out on such a
small wafer, which increases the area fraction of the wafer
that is unusable due to non-uniformity in growth near the
wafer edge. The second is that after epitaxial growth of opto-
electronic device layers on a substrate, the same number of
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processing steps are required on the small wafers to fabricate
the final device as one would use on a large area wafer. Both
of'these effects drive up the cost of manufacturing devices on
such small wafers, as both the cost per device fabricated and
the fraction of wafer area that is unusable increases with
decreasing wafer size. The relative immaturity of bulk GaN
growth techniques additionally limits the total number of
substrates which can be produced, potentially limiting the
feasibility scaling up a non-polar or semi-polar GaN substrate
based device.

Given the high cost of all orientations of GaN substrates,
the difficulty in scaling up wafer size, the inefficiencies inher-
ent in the processing of small wafers, and potential supply
limitations on semi-polar and nonpolar wafers, it becomes
extremely desirable to maximize utilization of substrates and
epitaxial material. In the fabrication of lateral cavity laser
diodes, it is typically the case that minimum die length is
determined by the laser cavity length, but the minimum die
width is determined by other device components such as wire
bonding pads or considerations such as mechanical area for
die handling in die attach processes. That is, while the laser
cavity length limits the laser die length, the laser die width is
typically much larger than the laser cavity width. Since the
GaN substrate and epitaxial material are only critical in and
near the laser cavity region this presents a great opportunity to
invent novel methods to form only the laser cavity region out
of'these relatively expensive materials and form the bond pad
and mechanical structure of the chip from a lower cost mate-
rial. Typical dimensions for laser cavity widths are 1-30 um,
while wire bonding pads are ~100 um wide. This means that
if the wire bonding pad width restriction and mechanical
handling considerations were eliminated from the GaN chip
dimension between >3 and 100 times more laser diode die
could be fabricated from a single epitaxial gallium and nitro-
gen containing wafer. This translates to a >3 to 100 times
reduction in epitaxy and substrate costs. In conventional
device designs, the relatively large bonding pads are
mechanically supported by the epitaxy wafer, although they
make no use of the material properties of the semiconductor
beyond structural support.

In an example, the present invention is a method of maxi-
mizing the number of GaN laser devices which can be fabri-
cated from a given epitaxial area on a gallium and nitrogen
containing substrate by spreading out the epitaxial material
on a carrier wafer such that the wire bonding pads or other
structural elements are mechanically supported by relatively
inexpensive carrier wafer, while the light emitting regions
remain fabricated from the necessary epitaxial material. This
invention will drastically reduce the chip cost in all gallium
and nitrogen based laser diodes, and in particular could
enable cost efficient nonpolar and semipolar laser diode tech-
nology.

These devices include a gallium and nitrogen containing
substrate (e.g., GaN) comprising a surface region oriented in
either a semipolar or non-polar configuration, but can be
others. The device also has a gallium and nitrogen containing
material comprising InGaN overlying the surface region. Ina
specific embodiment, the present laser device can be
employed in either a semipolar or non-polar gallium contain-
ing substrate, as described below. As used herein, the term
“substrate” can mean the bulk substrate or can include over-
lying growth structures such as a gallium and nitrogen con-
taining epitaxial region, or functional regions such as n-type
GaN, combinations, and the like. We have also explored
epitaxial growth and cleave properties on semipolar crystal
planes oriented between the nonpolar m-plane and the polar
c-plane. In particular, we have grown on the {30-31} and
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{20-21} families of crystal planes. We have achieved prom-
ising epitaxy structures and cleaves that will create a path to
efficient laser diodes operating at wavelengths from about
400 nm to green, e.g., 500 nm to 540 nm. These results
include bright blue epitaxy in the 450 nm range, bright green
epitaxy in the 520 nm range, and smooth cleave planes
orthogonal to the projection of the c-direction.

In a specific embodiment, the gallium nitride substrate
member is a bulk GaN substrate characterized by having a
semipolar or non-polar crystalline surface region, but can be
others. In a specific embodiment, the bulk nitride GaN sub-
strate comprises nitrogen and has a surface dislocation den-
sity between about 10ES cm™2 and about 10E7 cm™ or below
10E5 cm™2. The nitride crystal or wafer may comprise Al -
In,Ga,_, N, where 0=x, y, x+y=1. In one specific embodi-
ment, the nitride crystal comprises GaN. In one or more
embodiments, the GaN substrate has threading dislocations,
ata concentration between about 10E5 cm™ and about 10E8
cm™, in a direction that is substantially orthogonal or oblique
with respect to the surface. As a consequence of the orthogo-
nal or oblique orientation of the dislocations, the surface
dislocation density is between about 10E5 cm™2 and about
10E7 cm™ or below about 10E5 cm™2. In a specific embodi-
ment, the device can be fabricated on a slightly off-cut semi-
polar substrate as described in U.S. Ser. No. 12/749,466 filed
Mar. 29, 2010, which claims priority to U.S. Provisional No.
61/164,409 filed Mar. 28, 2009, commonly assigned, and
hereby incorporated by reference herein.

The substrate typically is provided with one or more of the
following epitaxially grown elements, but is not limiting:

an n-GaN cladding region with a thickness of 50 nm to
about 6000 nm with a Sior oxygen doping level of about
5E16 cm™ to 1E19 cm™>

an InGaN region of a high indium content and/or thick
InGaN layer(s) or Super SCH region;

ahigher bandgap strain control region overlying the InGaN
region;

optionally, an SCH region overlying the InGaN region;

multiple quantum well active region layers comprised of
three to five or four to six 3.0-5.5.0 nm InGaN quantum
wells separated by 1.5-10.0 nm GaN barriers

optionally, a p-side SCH layer comprised of InGaN with
molar a fraction of indium of between 1% and 10% and
a thickness from 15 nm to 100 nm

an electron blocking layer comprised of AlGaN with molar
fraction of aluminum of between 5% and 20% and thick-
ness from 10 nm to 15 nm and doped with Mg.

a p-GaN cladding layer with a thickness from 400 nm to
1000 nm with Mg doping level of 5E17 cm™ to 1E19
cm™

ap++-GaN contact layer with a thickness from 20 nm to 40
nm with Mg doping level of 1E20 cm™ to 1E21 cm™

Typically each of these regions is formed using at least an
epitaxial deposition technique of metal organic chemical
vapor deposition (MOCVD), molecular beam epitaxy
(MBE), or other epitaxial growth techniques suitable for GaN
growth. The active region can include one to twenty quantum
well regions according to one or more embodiments. As an
example following deposition of the n-type Al In Ga, , N
layer for a predetermined period of time, so as to achieve a
predetermined thickness, an active layer is deposited. The
active layer may comprise a single quantum well or a multiple
quantum well, with 2-10 quantum wells. The quantum wells
may comprise InGaN wells and GaN barrier layers. In other
embodiments, the well layers and barrier layers comprise
Al InGa,, N and AllnGa, N, respectively, where
O=w, X, y, Z, W+X, y+Z=<1, where w<u, y and/or x>V, 7 so that
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the bandgap of the well layer(s) is less than that of the barrier
layer(s) and the n-type layer. The well layers and barrier
layers may each have a thickness between about 1 nm and
about 15 nm. In another embodiment, the active layer com-
prises a double heterostructure, with an InGaN or
AlwInxGal-w-xN layer about 10 nm to 100 nm thick sur-
rounded by GaN or Al In Ga, N layers, where w<u, y
and/or x>v, z. The composition and structure of the active
layer are chosen to provide light emission at a preselected
wavelength. The active layer may be left undoped (or unin-
tentionally doped) or may be doped n-type or p-type.

The active region can also include an electron blocking
region, and a separate confinement heterostructure. In some
embodiments, an electron blocking layer is preferably depos-
ited. The electron-blocking layer may comprise
Al InGa, . N, where Oss, t, s+t<1, with a higher bandgap
than the active layer, and may be doped p-type or the electron
blocking layer comprises an AlGaN/GaN super-lattice struc-
ture, comprising alternating layers of AlGaN and GaN. Alter-
natively, there may be no electron blocking layer. As noted,
the p-type gallium nitride structure, is deposited above the
electron blocking layer and active layer(s). The p-type layer
may be doped with Mg, to a level between about 10E16 cm-3
and 10E22 cm-3, and may have a thickness between about 5
nm and about 1000 nm. The outermost 1-50 nm of the p-type
layer may be doped more heavily than the rest of the layer, so
as to enable an improved electrical contact.

The present invention is directed towards the fabrication of
optoelectronic devices from semiconductor wafers. In par-
ticular, the present invention increases utilization of substrate
wafers and epitaxy material through a selective area bonding
process to transfer individual die of epitaxy material to a
carrier wafer in such a way that the die pitch is increased on
the carrier wafer relative to the original epitaxy wafer. The
arrangement of epitaxy material allows device components
which do not require the presence of the expensive gallium
and nitrogen containing substrate and overlying epitaxy
material often fabricated on a gallium and nitrogen contain-
ing substrate to be fabricated on the lower cost carrier wafer,
allowing for more efficient utilization of the gallium and
nitrogen containing substrate and overlying epitaxy material.

In an embodiment, mesas of gallium and nitrogen contain-
ing laser diode epitaxy material are fabricated in a dense array
on a gallium and nitrogen containing substrate. This pattern
pitch will be referred to as the “first pitch’. The first pitch is
often a design width that is suitable for fabricating each of the
epitaxial regions on the substrate, while not large enough for
completed laser devices, which often desire larger non-active
regions or regions for contacts and the like. For example,
these mesas would have a first pitch ranging from about 5
microns to about 30 microns or to about 50 microns. Each of
these mesas is a ‘die’.

In an example, these die are then transferred to a carrier
wafer at a second pitch such that the second pitch on the
carrier wafer is greater than the first pitch on the gallium and
nitrogen containing substrate. In an example, the second pitch
is configured with the die to allow each die with a portion of
the carrier wafer to be a laser device, including contacts and
other components. For example, the second pitch would be
about 100 microns to about 200 microns or to about 300
microns. The second die pitch allows for easy mechanical
handling and room for wire bonding pads positioned in the
regions of carrier wafer in-between epitaxy mesas, enabling a
greater number of laser diodes to be fabricated from a given
gallium and nitrogen containing substrate and overlying epi-
taxy material. Side view schematics of state of the art and die
expanded laser diodes are shown in FIG. 1 and FIG. 2. Typical
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dimensions for laser ridge widths and the widths necessary
for mechanical and wire bonding considerations are from 1
pm to 30 pm and from 100 um to 300 pm, respectively,
allowing for large potential improvements in gallium and
nitrogen containing substrate and overlying epitaxy material
usage efficiency with the current invention.

FIG. 4 is a simplified schematic cross-sectional diagram
illustrating a state of the art laser diode structure. This dia-
gram is merely an example, which should not unduly limit the
scope of the claims herein. One of ordinary skill in the art
would recognize other variations, modifications, and alterna-
tives. As shown, the laser device includes gallium nitride
substrate 203, which has an underlying n-type metal back
contact region 201. In an embodiment, the metal back contact
region is made of a suitable material such as those noted
below and others. Further details of the contact region can be
found throughout the present specification and more particu-
larly below.

In an embodiment, the device also has an overlying n-type
gallium nitride layer 205, an active region 207, and an over-
lying p-type gallium nitride layer structured as a laser stripe
region 211. Additionally, the device also includes an n-side
separate confinement hetereostructure (SCH) 206, p-side
guiding layer or SCH 208, p-AlGaN EBL 209, among other
features. In an embodiment, the device also has a p++ type
gallium nitride material 213 to form a contact region. In an
embodiment, the p++ type contact region has a suitable thick-
ness and may range from about 10 nm 50 nm, or other thick-
nesses. In an embodiment, the doping level can be higher than
the p-type cladding region and/or bulk region. In an embodi-
ment, the p++ type region has doping concentration ranging
from about 10*° to 10** Mg/cm®, and others. The p++ type
region preferably causes tunneling between the semiconduc-
tor region and overlying metal contact region. In an embodi-
ment, each of these regions is formed using at least an epi-
taxial deposition technique of metal organic chemical vapor
deposition (MOCVD), molecular beam epitaxy (MBE), or
other epitaxial growth techniques suitable for GaN growth. In
an embodiment, the epitaxial layer is a high quality epitaxial
layer overlying the n-type gallium nitride layer. In some
embodiments the high quality layer is doped, for example,
with Si or O to form n-type material, with a dopant concen-
tration between about 10'% cm™ and 10*° cm™>.

The device has a laser stripe region formed overlying a
portion of the off-cut crystalline orientation surface region.
As example, FIG. 3 is a simplified schematic diagram of
semipolar laser diode with the cavity aligned in the projection
of c-direction with cleaved or etched mirrors. The laser stripe
region is characterized by a cavity orientation substantially in
aprojection of a c-direction, which is substantially normal to
an a-direction. The laser strip region has a first end 107 and a
second end 109 and is formed on a projection of a c-direction
on a {20-21} gallium and nitrogen containing substrate hav-
ing a pair of cleaved mirror structures, which face each other.
The first cleaved facet comprises a reflective coating and the
second cleaved facet comprises no coating, an antireflective
coating, or exposes gallium and nitrogen containing material.
The first cleaved facet is substantially parallel with the second
cleaved facet. The first and second cleaved facets are provided
by a scribing and breaking process according to an embodi-
ment or alternatively by etching techniques using etching
technologies such as reactive ion etching (RIE), inductively
coupled plasma etching (ICP), or chemical assisted ion beam
etching (CAIBE), or other method. The first and second mir-
ror surfaces each comprise a reflective coating. The coating is
selected from silicon dioxide, hafnia, and titania, tantalum
pentoxide, zirconia, including combinations, and the like.
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Depending upon the design, the mirror surfaces can also
comprise an anti-reflective coating.

In a specific embodiment, the method of facet formation
includes subjecting the substrates to a laser for pattern for-
mation. In a preferred embodiment, the pattern is configured
for the formation of a pair of facets for one or more ridge
lasers. In a preferred embodiment, the pair of facets face each
other and are in parallel alignment with each other. In a
preferred embodiment, the method uses a UV (355 nm) laser
to scribe the laser bars. In a specific embodiment, the laser is
configured on a system, which allows for accurate scribe lines
configured in one or more different patterns and profiles. In
one or more embodiments, the laser scribing can be per-
formed on the back-side, front-side, or both depending upon
the application. Of course, there can be other variations,
modifications, and alternatives.

In a specific embodiment, the method uses backside laser
scribing or the like. With backside laser scribing, the method
preferably forms a continuous line laser scribe that is perpen-
dicular to the laser bars on the backside of the GaN substrate.
In a specific embodiment, the laser scribe is generally 15-20
um deep or other suitable depth. Preferably, backside scribing
can be advantageous. That is, the laser scribe process does not
depend on the pitch of the laser bars or other like pattern.
Accordingly, backside laser scribing can lead to a higher
density of laser bars on each substrate according to a preferred
embodiment. In a specific embodiment, backside laser scrib-
ing, however, may lead to residue from the tape on one or
more of the facets. In a specific embodiment, backside laser
scribe often requires that the substrates face down on the tape.
With front-side laser scribing, the backside of the substrate is
in contact with the tape. Of course, there can be other varia-
tions, modifications, and alternatives.

Laser scribe Pattern: The pitch of the laser mask is about
200 um, but can be others. The method uses a 170 um scribe
with a 30 um dash for the 200 um pitch. In a preferred
embodiment, the scribe length is maximized or increased
while maintaining the heat affected zone of the laser away
from the laser ridge, which is sensitive to heat.

Laser scribe Profile: A saw tooth profile generally produces
minimal facet roughness. It is believed that the saw tooth
profile shape creates a very high stress concentration in the
material, which causes the cleave to propagate much easier
and/or more efficiently.

In a specific embodiment, the method of facet formation
includes subjecting the substrates to mechanical scribing for
pattern formation. In a preferred embodiment, the pattern is
configured for the formation of a pair of facets for one or more
ridge lasers. In a preferred embodiment, the pair of facets face
each other and are in parallel alignment with each other. In a
preferred embodiment, the method uses a diamond tipped
scribe to physically scribe the laser bars, though as would be
obvious to anyone learned in the art a scribe tipped with any
material harder than GaN would be adequate. In a specific
embodiment, the laser is configured on a system, which
allows for accurate scribe lines configured in one or more
different patterns and profiles. In one or more embodiments,
the mechanical scribing can be performed on the backside,
front-side, or both depending upon the application. Of course,
there can be other variations, modifications, and alternatives.

In a specific embodiment, the method uses backside scrib-
ing or the like. With backside mechanical scribing, the
method preferably forms a continuous line scribe that is per-
pendicular to the laser bars on the backside of the GaN sub-
strate. In a specific embodiment, the laser scribe is generally
15-20 um deep or other suitable depth. Preferably, backside
scribing can be advantageous. That is, the mechanical scribe
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process does not depend on the pitch of the laser bars or other
like pattern. Accordingly, backside scribing can lead to a
higher density of laser bars on each substrate according to a
preferred embodiment. In a specific embodiment, backside
mechanical scribing, however, may lead to residue from the
tape on one or more of the facets. In a specific embodiment,
backside mechanical scribe often requires that the substrates
face down on the tape. With front-side mechanical scribing,
the backside of the substrate is in contact with the tape. Of
course, there can be other variations, modifications, and alter-
natives.

It is well known that etch techniques such as chemical
assisted ion beam etching (CAIBE), inductively coupled
plasma (ICP) etching, or reactive ion etching (RIE) can result
in smooth and vertical etched sidewall regions, which could
serve as facets in etched facet laser diodes. In the etched facet
process a masking layer is deposited and patterned on the
surface of the wafer. The etch mask layer could be comprised
of dielectrics such as silicon dioxide (Si02), silicon nitride
(SixNy), a combination thereof or other dielectric materials.
Further, the mask layer could be comprised of metal layers
such as Ni or Cr, but could be comprised of metal combination
stacks or stacks comprising metal and dielectrics. In another
approach, photoresist masks can be used either alone or in
combination with dielectrics and/or metals. The etch mask
layer is patterned using conventional photolithography and
etch steps. The alignment lithography could be performed
with a contact aligner or stepper aligner. Such lithographi-
cally defined mirrors provide a high level of control to the
design engineer. After patterning of the photoresist mask on
top of the etch mask is complete, the patterns in then trans-
ferred to the etch mask using a wet etch or dry etch technique.
Finally, the facet pattern is then etched into the wafer using a
dry etching technique selected from CAIBE, ICP, RIE and/or
other techniques. The etched facet surfaces must be highly
vertical of between about 87 and 93 degrees or between about
89 and 91 degrees from the surface plane of the wafer. The
etched facet surface region must be very smooth with root
mean square roughness values of less than 50 nm, 20 nm, 5
nm, or 1 nm. Lastly, the etched must be substantially free from
damage, which could act as nonradiative recombination cen-
ters and hence reduce the COMD threshold. CAIBE is known
to provide very smooth and low damage sidewalls due to the
chemical nature of the etch, while it can provide highly ver-
tical etches due to the ability to tilt the wafer stage to com-
pensate for any inherent angle in etch.

The laser stripe is characterized by a length and width. The
length ranges from about 50 microns to about 3000 microns,
but is preferably between 10 microns and 400 microns,
between about 400 microns and 800 microns, or about 800
microns and 1600 microns, but could be others. The stripe
also has a width ranging from about 0.5 microns to about 50
microns, but is preferably between 0.8 microns and 2.5
microns for single lateral mode operation or between 2.5 um
and 35 um for multi-lateral mode operation, but can be other
dimensions. In a specific embodiment, the present device has
a width ranging from about 0.5 microns to about 1.5 microns,
a width ranging from about 1.5 microns to about 3.0 microns,
a width ranging from 3.0 microns to about 35 microns, and
others. In a specific embodiment, the width is substantially
constant in dimension, although there may be slight varia-
tions. The width and length are often formed using a masking
and etching process, which are commonly used in the art.

The laser stripe is provided by an etching process selected
from dry etching or wet etching. The device also has an
overlying dielectric region, which exposes a p-type contact
region. Overlying the contact region is a contact material,
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which may be metal or a conductive oxide or a combination
thereof. The p-type electrical contact may be deposited by
thermal evaporation, electron beam evaporation, electroplat-
ing, sputtering, or another suitable technique. Overlying the
polished region of the substrate is a second contact material,
which may be metal or a conductive oxide or a combination
thereof and which comprises the n-type electrical contact.
The n-type electrical contact may be deposited by thermal
evaporation, electron beam evaporation, electroplating, sput-
tering, or another suitable technique.

Given the high gallium and nitrogen containing substrate
costs, difficulty in scaling up gallium and nitrogen containing
substrate size, the inefficiencies inherent in the processing of
small wafers, and potential supply limitations on polar, semi-
polar, and nonpolar gallium and nitrogen containing wafers, it
becomes extremely desirable to maximize utilization of avail-
able gallium and nitrogen containing substrate and overlying
epitaxial material. In the fabrication of lateral cavity laser
diodes, it is typically the case that minimum die size is deter-
mined by device components such as the wire bonding pads
or mechanical handling considerations, rather than by laser
cavity widths. Minimizing die size is critical to reducing
manufacturing costs as smaller die sizes allow a greater num-
ber of devices to be fabricated on a single wafer in a single
processing run. The current invention is a method of maxi-
mizing the number of devices which can be fabricated from a
given gallium and nitrogen containing substrate and overly-
ing epitaxial material by spreading out the epitaxial material
onto a carrier wafer via a die expansion process.

A top down view of one preferred embodiment of the die
expansion process is depicted in FIG. 5. The starting materi-
als are patterned epitaxy and carrier wafers. Herein, the ‘epi-
taxy wafer’ or ‘epitaxial wafer’ is defined as the original
gallium and nitrogen containing wafer on which the epitaxial
material making up the active region was grown, while the
‘carrier wafer’ is defined as a wafer to which epitaxial layers
are transferred for convenience of processing. The carrier
wafer can be chosen based on any number of criteria includ-
ing but not limited to cost, thermal conductivity, thermal
expansion coefficients, size, electrical conductivity, optical
properties, and processing compatibility. The patterned epit-
axy wafer is prepared in such a way as to allow subsequent
selective release of bonded epitaxy regions. The patterned
carrier wafer is prepared such that bond pads are arranged in
order to enable the selective area bonding process. These
wafers can be prepared by a variety of process flows, some
embodiments of which are described below. In the first selec-
tive area bond step, the epitaxy wafer is aligned with the
pre-patterned bonding pads on the carrier wafer and a com-
bination of pressure, heat, and/or sonication is used to bond
the mesas to the bonding pads. The bonding material can be a
variety of media including but not limited to metals, poly-
mers, waxes, and oxides. Only epitaxial die which are in
contact with a bond bad on the carrier wafer will bond. Sub-
micron alignment tolerances are possible on commercial die
bonders. The epitaxy wafer is then pulled away, breaking the
epitaxy material at a weakened epitaxial release layer such
that the desired epitaxial layers remain on the carrier wafer.
Herein, a ‘selective area bonding step’ is defined as a single
iteration of this process. In the example depicted in FIG. 5,
one quarter of the epitaxial die are transferred in this first
selective bond step, leaving three quarters on the epitaxy
wafer. The selective area bonding step is then repeated to
transfer the second quarter, third quarter, and fourth quarter of
the epitaxial die to the patterned carrier wafer. This selective
area bond may be repeated any number of times and is not
limited to the four steps depicted in FIG. 5. The result is an
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array of epitaxial die on the carrier wafer with a wider die
pitch than the original die pitch on the epitaxy wafer. The die
pitch on the epitaxial wafer will be referred to as pitch 1, and
the die pitch on the carrier wafer will be referred to as pitch 2,
where pitch 2 is greater than pitch 1. At this point standard
laser diode processes can be carried out on the carrier wafer.
Side profile views of devices fabricated with state of the art
methods and the methods described in the current invention
are depicted in FIG. 1 and FIG. 2, respectively. The device
structure enabled by the current invention only contains the
relatively expensive epitaxy material where the optical cavity
requires it, and has the relatively large bonding pads and/or
other device components resting on a carrier wafer. Typical
dimensions for laser ridge widths and bonding pads are <30
um and >100 pum, respectively, allowing for three or more
times improved epitaxy usage efficiency with the current
invention.

There are many methods by which the expanded die pitch
can be achieved. One embodiment for the fabrication of GaN
based laser diodes is depicted in FIG. 6 and FIG. 7. This
embodiment uses a bandgap selective photo-electrical chemi-
cal (PEC) etch to undercut an array of mesas etched into the
epitaxial layers, followed by a selective area bonding process
on a patterned carrier wafer. The preparation of the epitaxy
wafer is shown in FIG. 6 and the selective area bonding
process is shown in FIG. 7. This process requires the inclu-
sion of a buried sacrificial region, which can be selectively
PEC etched by bandgap. For GaN based optoelectronic
devices, InGaN quantum wells have been shown to be an
effective sacrificial region during PEC etching.’> The first
step depicted in FIG. 6 is a top down etch to expose the
sacrificial layers, followed by a bonding metal deposition as
shown in FIG. 6. With the sacrificial region exposed a band-
gap selective PEC etch is used to undercut the mesas. The
bandgaps of the sacrificial region and all other layers are
chosen such that only the sacrificial region will absorb light,
and therefor etch, during the PEC etch. With proper control of
etch rates a thin strip of material can be left to weakly connect
the mesas to the epitaxy substrate. This wafer is then aligned
and bonded to a patterned carrier wafer, as shown in FIG. 7.
Gold-gold metallic bonding is used as an example in this
work, although a wide variety of oxide bonds, polymer bonds,
wax bonds etc. are potentially suitable. Submicron alignment
tolerances are possible using commercial available die bond-
ing equipment. The carrier wafer is patterned in such a way
that only selected mesas come in contact with the metallic
bond pads on the carrier wafer. When the epitaxy substrate is
pulled away the bonded mesas break off at the weakened
sacrificial region and a portion 111 of the mesas remain intact
on the carrier wafer, while the un-bonded mesas remain
attached to the epitaxy substrate. This selective area bonding
process can then be repeated to transfer the remaining mesas
in the desired configuration. This process can be repeated
through any number of iterations and is not limited to the two
iterations depicted in FIG. 7. The carrier wafer can be of any
size, including but not limited to 2 inch, 3 inch, 4 inch, 6 inch,
8 inch, and 12 inch. After all desired mesas have been trans-
ferred, a second bandgap selective PEC etch can be optionally
used to remove any remaining sacrificial region material to
yield smooth surfaces. At this point standard laser diode pro-
cesses can be carried out on the carrier wafer.

Another embodiment of the invention uses a sacrificial
region with a higher bandgap than the active region such that
both layers are absorbing during the bandgap PEC etching
process. In this embodiment, the active region can be pre-
vented from etching during the bandgap selective PEC etch
using an insulating protective layer on the sidewall, as shown
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in FIG. 8. The first step depicted in FIG. 8 is an etch to expose
the active region of the device. This step is followed by the
deposition of a protective insulating layer on the mesa side-
walls, which serves to block PEC etching of the active region
during the later sacrificial region undercut PEC etching step.
A second top down etch is then performed to expose the
sacrificial layers and bonding metal is deposited as shown in
FIG. 8. With the sacrificial region exposed a bandgap selec-
tive PEC etch is used to undercut the mesas. At this point, the
selective area bonding process shown in FIG. 7 is used to
continue fabricating devices.

Another embodiment of the invention incorporates the fab-
rication of device components on the dense epitaxy wafers
before the selective area bonding steps. In the embodiment
depicted in FIG. 9 the laser ridge, sidewall passivation, and
contact metal are fabricated on the original epitaxial wafer
before the die expansion process. This process flow is given
for example purposes only and is not meant to limit which
device components can be processed before the die expansion
process. This work flow has potential cost advantages since
additional steps are performed on the higher density epitaxial
wafer before the die expansion process. A detailed schematic
of'this process flow is depicted in FIG. 9.

In another preferred embodiment of the invention the gal-
lium and nitrogen epitaxial material will be grown on a gal-
lium and nitrogen containing substrate material of one of the
following orientations: m-plane, {50-51}, {30-31}, {20-21},
{30-32}, {50-5-1}, {30-3-1}, {20-2-1}, {30-3-2}, or offcuts
of these planes within +/-5 degrees towards a-plane and/or
c-plane

In another embodiment of the invention individual PEC
undercut etches are used after each selective bonding step for
etching away the sacrificial release layer of only bonded
mesas. Which epitaxial die get undercut is controlled by only
etching down to expose the sacrificial layer of mesas which
are to be removed on the current selective bonding step. The
advantage of this embodiment is that only a very coarse
control of PEC etch rates is required. This comes at the cost of
additional processing steps and geometry constrains.

In another embodiment of the invention the bonding layers
can be a variety of bonding pairs including metal-metal,
oxide-oxide, soldering alloys, photoresists, polymers, wax,
etc.

In another embodiment of the invention the sacrificial
region is completely removed by PEC etching and the mesa
remains anchored in place by any remaining defect pillars.
PEC etching is known to leave intact material around defects
which act as recombination centers.>> Additional mecha-
nisms by which a mesa could remain in place after a complete
sacrificial etch include static forces or Van der Waals forces.

In another embodiment ofthe invention a shaped sacrificial
region expose mesa is etched to leave larger regions near the
ends of each epitaxy die. Bonding metal is placed only on the
regions of epitaxy that are to be transferred. A PEC etch is
then performed such that the epitaxy die to be transferred is
completely undercut while the larger regions near the end are
only partially undercut. The intact sacrificial regions at the
ends of the die provide mechanical stability through the selec-
tive area bonding step. As only a few nanometers of thickness
will be undercut, this geometry should be compatible with
standard bonding processes. After the selective area bonding
step, the epitaxy and carrier wafers are mechanically sepa-
rated, cleaving at the weak points between the bond metal and
intact sacrificial regions. Example schematics of this process
are depicted in FIGS. 10 and 11. After the desired number of
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repetitions is completed, state of the art laser diode fabrica-
tion procedures can be applied to the die expanded carrier
wafer.

In another embodiment of the invention, the release of the
epitaxial layers is accomplished by means other than PEC
etching, such as laser lift off.

In another embodiment of the invention the carrier wafer is
another semiconductor material, a metallic material, or a
ceramic material. Some potential candidates include silicon,
gallium arsenide, sapphire, silicon carbide, diamond, gallium
nitride, AIN, polycrystalline AIN, indium phosphide, germa-
nium, quartz, copper, gold, silver, aluminum, stainless steel,
or steel.

In another embodiment of the invention the laser facets are
produced by cleaving processes. If a suitable carrier wafer is
selected it is possible to use the carrier wafer to define cleav-
ing planes in the epitaxy material. This could improve the
yield, quality, ease, and/or accuracy of the cleaves.

In another embodiment of the invention the laser facets are
produced by etched facet processes. In the etched facet
embodiment a lithographically defined mirror pattern is
etched into the gallium and nitrogen to form facets. The etch
process could be a dry etch process selected from inductively
coupled plasma etching (ICP), chemically assisted ion beam
etching (CAIBE), or reactive ion etching (RIE) Etched facet
process can be used in combination with the die expansion
process to avoid facet formation by cleaving, potentially
improved yield and facet quality.

In another embodiment of the invention die singulation is
achieved by cleaving processes which are assisted by the
choice of carrier wafer. For example, if a silicon or GaAs
carrier wafer is selected there will be a system of convenient
cubic cleave planes available for die singulation by cleaving.
In this embodiment there is no need for the cleaves to transfer
to the epitaxy material since the die singulation will occur in
the carrier wafer material regions only.

In another embodiment of the invention any of the above
process flows can be used in combination with the wafer
tiling. As an example, 7.5 mm by 18 mm substrates can be
tiled onto a 2 inch carrier wafer, allowing topside processing
and selective area bonding to be carried out on multiple epi-
taxy substrates in parallel for further cost savings.

In another embodiment of the invention the substrate wafer
is reclaimed after the selective area bond steps through a
re-planarization and surface preparation procedure. The epi-
taxy wafer can be reused any practical number of times.®

In an example, the present invention provides a method for
increasing the number of gallium and nitrogen containing
laser diode devices which can be fabricated from a given
epitaxial surface area; where the gallium and nitrogen con-
taining epitaxial layers overlay gallium and nitrogen contain-
ing substrates. The epitaxial material comprises of at least the
following layers: a sacrificial region which can be selectively
etched using a bandgap selective PEC etch, an n-type clad-
ding region, an active region comprising of at least one active
layer overlying the n-type cladding region, and a p-type clad-
ding region overlying the active layer region. The gallium and
nitrogen containing epitaxial material is patterned into die
with a first die pitch; the die from the gallium and nitrogen
containing epitaxial material with a first pitch is transferred to
acarrier wafer to form a second die pitch on the carrier wafer;
the second die pitch is larger than the first die pitch.

In an example, each epitaxial die is an etched mesa with a
pitch of between 1 um and 10 pm wide or between 10 micron
and 50 microns wide and between 50 and 3000 um long. In an
example, the second die pitch on the carrier wafer is between
100 microns and 200 microns or between 200 microns and
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300 microns. In an example, the second die pitch on the
carrier wafer is between 2 times and 50 times larger than the
die pitch on the epitaxy wafer. In an example, semiconductor
laser devices are fabricated on the carrier wafer after epitaxial
transfer. In an example, the semiconductor devices contain
GaN, AIN, InN, InGaN, AlGaN, InAIN, and/or InAlGaN. In
an example, the gallium and nitrogen containing material are
grown on a polar, non-polar, or semi-polar plane. In an
example, one or multiple laser diode cavities are fabricated on
each die of epitaxial material. In an example, device compo-
nents, which do not require epitaxy material are placed in the
space between epitaxy die.

As used herein, the term GaN substrate is associated with
Group Ill-nitride based materials including GaN, InGaN,
AlGaN, or other Group 111 containing alloys or compositions
that are used as starting materials. Such starting materials
include polar GaN substrates (i.e., substrate where the largest
area surface is nominally an (h k 1) plane wherein h=k=0, and
1is non-zero), non-polar GaN substrates (i.e., substrate mate-
rial where the largest area surface is oriented at an angle
ranging from about 80-100 degrees from the polar orientation
described above towards an (h k 1) plane wherein 1=0, and at
least one of'h and k is non-zero) or semi-polar GaN substrates
(i.e., substrate material where the largest area surface is ori-
ented at an angle ranging from about +0.1 to 80 degrees or
110-179.9 degrees from the polar orientation described above
towards an (h k1) plane wherein 1=0, and at least one ot h and
k is non-zero).

As shown, the present device can be enclosed in a suitable
package. Such package can include those such as in TO-38
and TO-56 headers. Other suitable package designs and
methods can also exist, such as TO-9 or flat packs where fiber
optic coupling is required and even non-standard packaging.
In a specific embodiment, the present device can be imple-
mented in a co-packaging configuration.

In other embodiments, the present laser device can be
configured in a variety of applications. Such applications
include laser displays, metrology, communications, health
care and surgery, information technology, and others. As an
example, the present laser device can be provided in a laser
display such as those described in U.S. Ser. No. 12/789,303
filed May 27th, 2010, which claims priority to U.S. Provi-
sional Nos. 61/182,105 filed May 29, 2009 and 61/182,106
filed May 29, 2009, each of which is hereby incorporated by
reference herein.

In an example, the present techniques can be used in con-
junction with “Semiconductor Laser Diode on Tiled Gallium
Containing Material,” listed under U.S. Ser. No. 14/175,622,
filed Feb. 7, 2014, commonly assigned, and hereby incorpo-
rated by reference herein. In an example, the present tech-
niques can be used with the tiling technique for processing
small GaN wafers prior to transfer of GaN epi to carrier wafer
for low cost, high volume small GaN wafers.

In an alternative example, the present technique can also be
used in conjunction with a double ITO and cleaving technique
titled “Gallium and Nitrogen Containing [.aser Device Hav-
ing Confinement Region,” which is described in U.S. Ser. No.
61/892,981, filed Oct. 18, 2013, commonly assigned, and
hereby incorporated by reference herein. That is, the present
technique can be integrated with the double clad and cleaving
technology.

While the above is a full description of the specific embodi-
ments, various modifications, alternative constructions and
equivalents may be used. As an example, the packaged device
can include any combination of elements described above, as
well as outside of the present specification. As used herein,
the term “substrate” can mean the bulk substrate or can
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include overlying growth structures such as a gallium and
nitrogen containing epitaxial region, or functional regions
such as n-type GaN, combinations, and the like. Additionally,
the examples illustrates two waveguide structures in normal
configurations, there can be variations, e.g., other angles and
polarizations. For semi-polar, the present method and struc-
ture includes a stripe oriented perpendicular to the c-axis, an
in-plane polarized mode is not an Eigen-mode of the
waveguide. The polarization rotates to elliptic (if the crystal
angle is not exactly 45 degrees, in that special case the polar-
ization would rotate but be linear, like in a half-wave plate).
The polarization will of course not rotate toward the propa-
gation direction, which has no interaction with the Al band.
The length of the a-axis stripe determines which polarization
comes out at the next mirror. Although the embodiments
above have been described in terms of a laser diode, the
methods and device structures can also be applied to any light
emitting diode device. Therefore, the above description and
illustrations should not be taken as limiting the scope of the
present invention which is defined by the appended claims.
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The invention claimed is:

1. A method for manufacturing a gallium and nitrogen

containing laser diode device, the method comprising:

providing a gallium and nitrogen containing substrate hav-
ing a surface region;

forming epitaxial material overlying the surface region, the
epitaxial material comprising an n-type cladding region,
an active region comprising of at least one active layer
overlying the n-type cladding region, and a p-type clad-
ding region overlying the active layer region;

patterning the epitaxial material to form a plurality of dice,
each of the dice corresponding to at least one laser
device, characterized by a first pitch between a pair of
dice, the first pitch being less than a design width;

transferring at least a portion of the plurality of dice to a
carrier wafer such that each pair of transferred dice is
configured with a second pitch between each pair of
dice, the second pitch being larger than the first pitch and
corresponding to the design width, the transferring com-
prising:
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selectively removing at least a portion of a release region
of one or more die while leaving an anchor region
intact between the one or more die and the gallium and
nitrogen containing substrate,

selectively bonding the one or more die to the carrier
wafer, and

releasing the one or more die from the gallium and
nitrogen containing substrate by separating the
anchor region associated with each of the one or more
die while a portion of the epitaxial material remains
bonded to the carrier wafer.

2. The method of claim 1, wherein each die is shaped as a
mesa, and each pair of die having the first pitch ranging
between 1 pm and 10 um or between 10 micron and 50
microns wide or between 50 and 3000 pm long; and the
patterning comprising an etching process.

3. The method of claim 1, wherein the second pitch on the
carrier wafer is between 100 microns and 200 microns or
between 200 microns and 300 microns.

4. The method of claim 1, wherein the second pitch on the
carrier wafer is between 2 times and 50 times larger than the
first pitch.

5. The method of claim 1, further comprising processing
each of the die to form at least one laser device on each die
after the transferring or further comprising forming one or
multiple laser diode cavities on each die of epitaxial material.

6. The method of claim 1, wherein each pair of dice over-
lying the carrier wafer is defined by the second pitch; and
further comprising forming one or more components overly-
ing a space defined by the second pitch, the one or more
components being selected from a contact region or a bonding
pad.

7. The method of claim 1, wherein the carrier wafer is
characterized by a conductive material for a contact region or
contact regions; wherein each of the laser devices is charac-
terized by a wavelength ranging between 200 and 2000 nm;
and

wherein each of the laser device comprising a pair of facets

configured from a cleaving process or an etching pro-
cess, the etching process being selected from inductively
coupled plasma etching, chemical assisted ion beam
etching, or reactive ion beam etching.

8. The method of claim 1, further comprising singulating
each of'the die by separating each pair of die ata space defined
by the second pitch; wherein the epitaxial material contains
GaN, AIN, InN, InGaN, AlGaN, InAIN, and/or InAlGaN.

9. The method of claim 1, wherein the gallium and nitrogen
containing material are grown on a polar, non-polar, or semi-
polar plane.

10. The method of claim 1, wherein the carrier wafer com-
prises at least one of silicon, gallium arsenide, sapphire, sili-
con carbide, diamond, gallium nitride, AIN, indium phos-
phide, or metallic.

11. The method of claim 1, wherein the selectively bond-
ing, comprises bonding each of the one or more die to a
bonding pad on the carrier wafer.

12. The method of claim 1, wherein the transferring is
repeated N times to transfer one or more other die to the
carrier wafer where N is an integer between 1 and 50.

13. The method of claim 1, wherein the transferring is
repeated N times to transfer one or more other die to the
carrier wafer where N is an integer between 1 and 50 to
remove each of the die to be bonded to the carrier wafer;
whereupon the carrier wafer has a larger diameter than a
diameter of the gallium and nitrogen containing substrate.

14. The method of claim 1 wherein the transferring is
repeated N times to transfer one or more other die to the
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carrier wafer where N is an integer between 1 and 50 to
remove each of the die to be bonded to the carrier wafer;
whereupon the carrier wafer has a larger diameter than a
diameter of the gallium and nitrogen containing substrate;
whereupon bonds between each of the one or more die and the
carrier wafer comprise at least one of metal-metal pairs,
oxide-oxide pairs, spin-on-glass, soldering alloys, polymers,
photoresists, and/or wax.

15. The method of claim 1, wherein the transferring is
repeated N times to transfer one or more other die to the
carrier wafer, where N is an integer between 1 and 50 to
remove each of the die to be bonded to the carrier wafer;
whereupon the carrier wafer has a larger diameter than a
diameter of the gallium and nitrogen containing substrate;
whereupon bonds between each of the one or more die and the
carrier wafer comprise at least one of metal-metal pairs,
oxide-oxide pairs, spin-on-glass, soldering alloys, polymers,
photoresists, and/or wax; and wherein the selectively remov-
ing uses a bandgap selective photo-electrical-chemical (PEC)
etching to remove the portion of the release region.

16. The method of claim 15, wherein the PEC etching
selectively removes substantially all of the release region
while leaving intact a portion of the release region to provide
structure during the selectively bonding, the portion of the
release region forming the anchor region.

17. The method of claim 15, wherein the PEC etching
selectively removes the release region while leaving the
anchor region in tact to support the die during the selective
bonding.

18. The method of claim 15, wherein the PEC etching
selectively removes the release region while leaving the
anchor region intact to support the die during the selective
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bonding, the anchor region comprising a defect pillar, a static
force, or a Van der Waals force.

19. The method of claim 15 further comprising an addi-
tional PEC etching process to completely remove remaining
portions of the release region on the one or more die while the
one or more die are bonded to the carrier wafer.

20. The method of claim 15 further comprising forming a
metal material overlying the one or more die before transfer-
ring, while leaving exposed one or more anchor regions,
which are configured to selectively break and separate from
each of the die after selectively bonding.

21. The method of claim 15 wherein each of the one or
more die comprises a passivation region for protection from
PEC etching.

22. The method of claim 1, wherein the release region is
composed of a material with a smaller bandgap than an adja-
cent epitaxial layer.

23. The method of claim 1, wherein the release region is
composed of InGaN, InN, InAIN; or InAlGaN.

24. The method of claim 1 wherein the selectively remov-
ing forms an undercut region within a vicinity of each of the
one or more die to enable selective release of each of the one
or more die.

25. The method of claim 1, wherein each of the die com-
prises one or more components, the one or more components
being selected from at least one of an electrical contact, a
current spreading region, an optical cladding region, a laser
ridge, a laser ridge passivation, or a pair of facets, either alone
or in any combination.

26. The method of claim 1, wherein the gallium and nitro-
gen containing substrate is reclaimed and prepared for reuse
after transferring.



